Comparison of Different Fixation Methods for Combined Histological and Biomolecular Analysis of Fixed and Decalcified Bone Samples

Author:

Al-Maawi Sarah,Valenzuela Priscilia,Dohle Eva,Heselich Anja,Sader Robert,Ghanaati ShahramORCID

Abstract

The combination of histological and biomolecular analyses provides deep understanding of different biological processes and is of high interest for basic and applied research. However, the available analytical methods are still limited, especially when considering bone samples. This study compared different fixation media to identify a sufficient analytical method for the combination of histological, immuno-histological and biomolecular analyses of the same fixed, processed and paraffin embedded bone sample. Bone core biopsies of rats’ femurs were fixed in different media (RNAlater + formaldehyde (R + FFPE), methacarn (MFPE) or formaldehyde (FFPE)) for 1 week prior to decalcification by EDTA and further histological processing and paraffin embedding. Snap freezing (unfixed frozen tissue, UFT) and incubation in RNAlater were used as additional controls. After gaining the paraffin sections for histological and immunohistological analysis, the samples were deparaffined and RNA was isolated by a modified TRIZOL protocol. Subsequently, gene expression was evaluated using RT-qPCR. Comparable histo-morphological and immuno-histological results were evident in all paraffin embedded samples of MFPE, FFPE and R + FFPE. The isolated RNA in the group of MFPE showed a high concentration and high purity, which was comparable to the UFT and RNAlater groups. However, in the groups of FFPE and R + FFPE, the RNA quality and quantity were statistically significantly lower when compared to MFPE, UFT and RNAlater. RT-qPCR results showed a comparable outcome in the group of MFPE and UFT, whereas the groups of FFPE and R + FFPE did not result in a correctly amplified gene product. Sample fixation by means of methacarn is of high interest for clinical samples to allow a combination of histological, immunohistological and biomolecular analysis. The implementation of such evaluation method in clinical research may allow a deeper understanding of the processes of bone formation and regeneration.

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3