Biocompatibility and Biological Corrosion Resistance of Ti–39Nb–6Zr+0.45Al Implant Alloy

Author:

Hwang Yu-Jin,Choi Young-Sin,Hwang Yun-Ho,Cho Hyun-Wook,Lee Dong-Geun

Abstract

Titanium and titanium alloys are promising implant metallic materials because of their high strengths, low elastic moduli, high corrosion resistances, and excellent biocompatibilities. A large difference in elastic modulus between the implant material and bone leads to a stress shielding effect, which increases the probability of implant separation or decrease in the bone density around it. Thus, a lower elastic modulus is required for a better implant metallic material. β titanium has a lower elastic modulus and high strength and can reduce the probability of the stress shielding effect. In this study, the applicability of the Ti–39Nb–6Zr+0.45Al alloy, obtained by adding a small amount of aluminum to the Ti–39Nb–6Zr alloy, as a biomedical implant material was evaluated. The mechanical properties and biocompatibility of the alloy were evaluated. The biocompatibility of Ti–39Nb–6Zr+0.45Al was similar to that of Ti–39Nb–6Zr according to in vitro and in vivo experiments. In addition, the biological corrosion resistances were evaluated through a corrosion test using a 0.9% NaCl solution, which is equivalent to physiological saline. The corrosion resistance was improved by the addition of Al. The yield strength of the Ti–39Nb–6Zr+0.45Al alloy was improved by approximately 20%. The excellent biocompatibility confirmed its feasibility for use as a biomedical implant material.

Funder

Ministry of Trade, Industry and Energy

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3