Author:
Hwang Yu-Jin,Choi Young-Sin,Hwang Yun-Ho,Cho Hyun-Wook,Lee Dong-Geun
Abstract
Titanium and titanium alloys are promising implant metallic materials because of their high strengths, low elastic moduli, high corrosion resistances, and excellent biocompatibilities. A large difference in elastic modulus between the implant material and bone leads to a stress shielding effect, which increases the probability of implant separation or decrease in the bone density around it. Thus, a lower elastic modulus is required for a better implant metallic material. β titanium has a lower elastic modulus and high strength and can reduce the probability of the stress shielding effect. In this study, the applicability of the Ti–39Nb–6Zr+0.45Al alloy, obtained by adding a small amount of aluminum to the Ti–39Nb–6Zr alloy, as a biomedical implant material was evaluated. The mechanical properties and biocompatibility of the alloy were evaluated. The biocompatibility of Ti–39Nb–6Zr+0.45Al was similar to that of Ti–39Nb–6Zr according to in vitro and in vivo experiments. In addition, the biological corrosion resistances were evaluated through a corrosion test using a 0.9% NaCl solution, which is equivalent to physiological saline. The corrosion resistance was improved by the addition of Al. The yield strength of the Ti–39Nb–6Zr+0.45Al alloy was improved by approximately 20%. The excellent biocompatibility confirmed its feasibility for use as a biomedical implant material.
Funder
Ministry of Trade, Industry and Energy
Korea Institute for Advancement of Technology
Subject
Biomedical Engineering,Biomaterials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献