Cost and Quality Optimization Taguchi Design with Grey Relational Analysis of Halloysite Nanotube Hybrid Composite: CNC Machine Manufacturing

Author:

Esangbedo Moses OlabheleORCID,Abifarin Johnson KehindeORCID

Abstract

Researchers who work on manufacturing hybrid composites have significant concerns about holistically optimizing more than one performance characteristic, as in the case of cost and quality optimization. They usually trade off one for the other. Hence, this study employed statistical tools and grey relational analyses (GRA) design to model and optimize the surface roughness and cutting force of Computer Numerical Control (CNC) machine settings to manufacture halloysite nanotube hybrid composite. In this paper, the GRA was able to address the multiple optimization complications by producing 0.6 mm depth of cut, 1500 rpm spindle speed, and 40 mmpm feed rate as the CNC machine settings for high-quality and low-cost hybrid composite. It was noticed that the mathematical and interaction modeling of surface roughness, cutting force, and grey relational grade (GRG) allowed different CNC machines to manufacture hybrid composites. This can assist researchers and production engineers of CNC machines. Variance analysis and delta statistical characteristics revealed that the depth of a cut is the most significant machine setting, with a contribution of 49.12%. This paper outlines the possible CNC machine settings for high-quality composite manufacturing. In future studies, it is recommended for researchers in the field of CNC machine manufacturing to consider the modeling analysis aspect of the optimization, which comprehensively provides the opportunity for the adjustment of CNC machines for better material performance, which has been lacking in the literature.

Publisher

MDPI AG

Subject

General Materials Science

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3