Determining Dynamic Mechanical Properties for Elastic Concrete Material Based on the Inversion of Spherical Wave

Author:

Lai Huawei,Wang Zhanjiang,Yang Liming,Wang Lili,Zhou Fenghua

Abstract

The paper presents a new method to study the dynamic mechanical properties of concrete under low pressure and a high strain rate via the inversion of spherical wave propagation. The dynamic parameters of rate-dependent constitutive relation of elastic concrete are determined by measured velocity histories of spherical waves. Firstly, the particle velocity time history profiles in the low stress elastic region at the radii of 100.6 mm, 120.6 mm, 140.6 mm, 160 mm, and 180.6 mm are measured in the semi-infinite space of concrete by using the mini-explosive ball and electromagnetic velocity measurement technology. Then, based on the universal spherical wave conservation equation and the fact that the accommodation relationship in state equation satisfies linear elastic law, the inverse problem analysis of spherical waves in concrete (called “NV + T0/SW”) is proposed, which can obtain the dynamic numerical constitutive behavior of concrete in three-dimensional stress by measuring the velocity histories. The numerical constitutive relation is expressed in the form of distortion, and it is found that the distortion law has an obvious rate effect. Finally, the rate-dependent dynamic parameters in concrete are determined by the standard linear solid model. The results show that the strain rate effect of concrete cannot be ignored with the strain rate range of 102 1/s. This study can provide a feasible method to determine the dynamic parameters of rate-dependent constitutive relation of concretes. This method has good applicability, especially in the study of the dynamic behavior of multicomponent composite materials with large-size particle filler.

Funder

National Natural Science Foundation of China

K. C. Wong Magna Fund in Ningbo University

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Wang, L.L. (2007). Foundations of Stress Waves, National Defense Industry Press. [1st ed.].

2. High Velocity Impact Dynamics;Chem. Eng. Sci.,1990

3. Wang, L.L., Hu, S.S., Yang, L.M., and Dong, X.L. (2017). Material Dynamics, China Science and Technology Press. [1st ed.].

4. Compressive behaviour of concrete at high strain rates;Mater. Struct.,1991

5. Review of strain rate effects for concrete in tension;ACI Mater. J.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3