Evaluating the Influence of Elevated Temperature on Compressive Strength of Date-Palm-Fiber-Reinforced Concrete Using Response Surface Methodology

Author:

Adamu MusaORCID,Ibrahim Yasser E.ORCID,Alanazi HaniORCID

Abstract

Due to its availability and affordable processing, date palm fiber (DPF) is among the natural and sustainable fibers used in cementitious composites. Furthermore, DPF is an agricultural, organic, and fibrous material that when subjected to higher temperature can easily degrade and cause reduction in strength. Therefore, the influence of elevated temperatures on the unit weight and strengths of DPF-reinforced concrete needs to be examined. Under this investigation, DPF is used in proportions of 0–3% weight of binder to produce a DPF-reinforced concrete. Silica fume was utilized as a supplemental cementitious material (SCM) in various amounts of 0%, 5%, 10%, and 15% by weight to enhance the heat resistance of the DPF-reinforced concrete. The concrete was then heated to various elevated temperatures for an hour at 200 °C, 400 °C, 600 °C, and 800 °C. After being exposed to high temperatures, the weight loss and the compressive and relative strengths were examined. The weight loss of DPF-reinforced concrete escalated with increments in temperature and DPF content. The compressive and relative strengths of the concrete improved when heated up to 400 °C, irrespective of the DPF and silica fume contents. The heat resistance of the concrete was enhanced with the replacement of up to 10% cement with silica fume when heated to a temperature up to 400 °C, where there were enhancements in compressive and relative strengths. However, at 800 °C, silica fume caused a significant decline in strength. The developed models for predicting the weight loss and the compressive and relative strengths of the DPF-reinforced concrete under high temperature using RSM have a very high degree of correlation and predictability. The models were said to have an average error of less than 6% when validated experimentally. The optimum DPF-reinforced concrete mix under high temperature was achieved by adding 1% DPF by weight of binder materials, replacing 12.14% of the cement using silica fume, and subjecting the concrete to a temperature of 317 °C. The optimization result has a very high desirability of 91.3%.

Funder

Structures and Materials (S&M) Research Laboratory of Prince Sultan University, Saudi Arabia

Prince Sultan University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3