Precipitation Law of Vanadium in Microalloyed Steel and Its Performance Influencing Factors

Author:

Liu Hongliang,Yang Bo,Chen Yu,Li Chuncheng,Liu Chengjun

Abstract

Based on theoretical calculations, laboratory simulation research and industrial production data analysis combined with characterisations such as metallographic microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and microhardness testing, this study investigated the state of occurrence and the precipitation law of vanadium (V) in microalloyed steel to determine a reasonable production process for V microalloyed steel. The results showed that the V(C,N) precipitation phase was the main form of V in microalloyed steel that precipitated after the transformation of austenite to ferrite. The amount of V precipitation was positively correlated with the amount of V that was added. However, the precipitation temperature was not significantly correlated with the amount added. When the V content increased from 0.03% to 0.06%, the initial precipitation temperature only increased by 23 °C. The coiling temperature was identified as the core factor affecting the strength of V microalloyed steel. When the effects of precipitation strengthening and microstructure strengthening were considered, as the coiling temperature decreased, the strength first increased, then decreased and finally increased again. Under different processing conditions, the strengthening of vanadium in the material increased first and then decreased as the temperature decreased (700–200 °C). The corresponding temperatures for the best strengthening effect of aging treatment, industrial statistical data and simulating coiling were 550, 470 and 400 °C, respectively. The difference between laboratory research results and industrial production was found. When V precipitation strengthening was used to improve material properties, it was necessary to determine a reasonable quantity of V to add and the production process, according to different alloy systems, to make more effective use of V microalloyed resources.

Funder

National Natural Science Foundation of China

Liao Ning Revitalization Talents Program

Basic Scientific Research Project of the Liaoning Provincial Department of Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3