Thermo-Hydraulic Performance of Solar Air Collectors with Artificially Roughened Absorbers: A Comparative Review of Semi-Empirical Models

Author:

Araújo AntónioORCID

Abstract

Due to the poor thermal characteristics of the air, the absorber roughness of solar air collectors is commonly artificially increased in order to enhance the heat transfer to the air stream. However, this is also accompanied by an undesirable increase in the pumping power due to increased friction losses. As a result, several authors have experimentally investigated several ways of maximizing the heat transfer while minimizing the friction losses of different absorbers, resulting in the development of semi-empirical functions relating the Nusselt number (a measure of heat transfer) and the friction factor (a measure of friction losses) to the Reynolds number and the roughness parameters considered for each absorber. The present paper reviews, considering the publications from the last ten years, these semi-empirical functions. Moreover, the optimum roughness parameters and operating conditions of the absorbers were estimated by finding the maximum values of two performance parameters (the thermo-hydraulic efficiency and effectiveness), calculated using the semi-empirical functions, in order to classify the absorbers in terms of their energy characteristics. This approach proves to be a rather effective way of optimizing the roughness characteristics of solar air collector absorbers. It is also concluded that, considering the range of absorbers analyzed here, generally, multiple V-shaped ribs with gaps provide the most effective roughness geometry.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3