Author:
Wu Song,Che Defu,Wang Zhiguo,Su Xiaohui
Abstract
Staged combustion is an effective technology to control NOx emissions for coal-fired boilers. In this paper, the characteristics of NOx emissions under a high temperature and strong reducing atmosphere conditions in staged air and O2/CO2 combustion were investigated by CHEMKIN. A methane flame doped with ammonia and hydrogen cyanide in a tandem-type tube furnace was simulated to detect the effects of combustion temperature and stoichiometric ratio on NOx emissions. Mechanism analysis was performed to identify the elementary steps for NOx formation and reduction at high temperatures. The results indicate that in both air and O2/CO2 staged combustion, the conversion ratios of fuel-N to NOx at the main combustion zone exit increase as the stoichiometric ratio rises, and they are slightly affected by the combustion temperature. The conversion ratios at the burnout zone exit decrease with the increasing stoichiometric ratio at low temperatures, and they are much higher than those at the main combustion zone exit. A lot of nitrogen compounds remain in the exhaust of the main combustion zone and are oxidized to NOx after the injection of a secondary gas. Staged combustion can lower NOx emissions remarkably, especially under a high temperature (≥1600 °C) and strong reducing atmosphere (SR ≤ 0.8) conditions. Increasing the combustion temperature under strong reducing atmosphere conditions can raise the H atom concentration and change the radical pool composition and size, which facilitate the reduction of NO to N2. Ultimately, the increased OH/H ratio in staged O2/CO2 combustion offsets part of the reducibility, resulting in the final NOx emissions being higher than those in air combustion under the same conditions.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献