Abstract
Growing penetration of uncoordinated Distributed Energy Resources (DERs) in distribution systems is contributing to the increase of the load variability to be covered at the transmission system level. Forced, fast and substantial changes of power plants’ output powers increase the risk of their failures, which threatens the reliable and safe delivery of electricity to end users in the power system. The paper handles this issue with the use of DERs and proposes a bilevel coordination concept of day-ahead operation planning with new kind of bids to be submitted by Distribution System Operators (DSOs) to the Transmission System Operator (TSO). This concept includes the extension of the Unit Commitment problem solved by TSO and a new optimization model to be solved by DSO for planning a smoothed power profile at the Transmission–Distribution (T–D) interface. Both optimization models are described in the paper. As simulations show, the modified 24-h power profiles at T–D interfaces result in a reduction of the demand for operation flexibility at the transmission system level and, importantly, result in a decrease of the number of conventional power plants that are required to operate during a day. Additionally, it has been proved that the modified profiles reduce the congestions in the transmission network. Hence, the concept presented in the paper can be identified as an important step towards the transformation of power systems to low-emission and reliable systems with high share of DERs.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference70 articles.
1. REN21—2019 Global Status Report,2019
2. From Distribution Networks to Smart Distribution Systems: Rethinking the Regulation of European Electricity DSOs;Pérez-Arriaga,2013
3. Pumped hydro energy storage system: A technological review
4. Flexible Coal Evolution from Baseload to Peaking Plant;Cochran,2013
5. Power Plant Cycling Costs;Kumar,2012
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献