DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources

Author:

Dzikowski RafalORCID

Abstract

Growing penetration of uncoordinated Distributed Energy Resources (DERs) in distribution systems is contributing to the increase of the load variability to be covered at the transmission system level. Forced, fast and substantial changes of power plants’ output powers increase the risk of their failures, which threatens the reliable and safe delivery of electricity to end users in the power system. The paper handles this issue with the use of DERs and proposes a bilevel coordination concept of day-ahead operation planning with new kind of bids to be submitted by Distribution System Operators (DSOs) to the Transmission System Operator (TSO). This concept includes the extension of the Unit Commitment problem solved by TSO and a new optimization model to be solved by DSO for planning a smoothed power profile at the Transmission–Distribution (T–D) interface. Both optimization models are described in the paper. As simulations show, the modified 24-h power profiles at T–D interfaces result in a reduction of the demand for operation flexibility at the transmission system level and, importantly, result in a decrease of the number of conventional power plants that are required to operate during a day. Additionally, it has been proved that the modified profiles reduce the congestions in the transmission network. Hence, the concept presented in the paper can be identified as an important step towards the transformation of power systems to low-emission and reliable systems with high share of DERs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference70 articles.

1. REN21—2019 Global Status Report,2019

2. From Distribution Networks to Smart Distribution Systems: Rethinking the Regulation of European Electricity DSOs;Pérez-Arriaga,2013

3. Pumped hydro energy storage system: A technological review

4. Flexible Coal Evolution from Baseload to Peaking Plant;Cochran,2013

5. Power Plant Cycling Costs;Kumar,2012

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3