A Statistical Approach for Predicting Airtightness in Residential Units of Reinforced Concrete Apartment Buildings in Korea

Author:

Ji Kyung-Hwan,Shin Hyun-KookORCID,Han Seungwoo,Jo Jae-Hun

Abstract

In this study, a model equation is derived that uses a statistical analysis based on empirical models to predict the airtightness of reinforced concrete apartment buildings popular in Asian regions. Airtightness data from 486 units personally measured by the authors in the past eight years are used. As major variables used in the prediction model, two groups of variables are configured for the geometric components of the envelope, which is a major path of airflow in a building and is where air infiltration and leakage occur. The two groups of variables represent (1) the areas of the individual components forming the envelope and (2) the connection lengths between different components of the envelope. For the effective prediction of airtightness, correlation analysis and multiple regression analysis were applied step by step in this study. The results of the correlation analysis indicated that the areas of the slab and the window are the area variables that present the greatest impact, whereas the perimeter length of the window is the connection length variable that presents the greatest impact. Using a multiple linear regression analysis method, airtightness prediction model equations can be derived, and it is found that the model with variables for area is able to predict airtightness more accurately compared to the two models derived from variables for connection length and all variables for area and connection length. Although the statistical approach in this study shows a limitation in that the prediction results may vary depending on the attributes and type of data collected by countries, the methodology and procedure in this study contribute to similar studies for making prediction models and finding the influence of variables in the future with high applicability and feasibility.

Funder

Inha University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3