Design Optimization and Coupled Dynamics Analysis of an Offshore Wind Turbine with a Single Swivel Connected Tether

Author:

Chen Jieyan,Li ChengxiORCID

Abstract

The increased interest in renewable wind energy has stimulated many offshore wind turbine concepts. This paper presents a design optimization and a coupled dynamics analysis of a platform with a single tether anchored to the seabed supported for a 5 MW baseline wind turbine. The design is based on a concept named SWAY. We conduct a parametric optimization process that accounts for important design considerations in the static and dynamic view, such as the stability, natural frequency, performance requirements, and cost feasibility. Through these optimization processes, we obtain and present the optimized model. We then establish the fully coupled aero-hydro-servo-elastic model by the time-domain simulation tool FAST (Fatigue, Aerodynamics, Structures, and Turbulence) with the hydrodynamic coefficients from an indoor program HydroGen. We conduct extensive time-domain simulations with various wind and wave conditions to explore the effects of wind speed and wave significant height on the dynamic performance of the optimized SWAY model in various water depths. The swivel connection between the platform and tether is the most special design for the SWAY model. Thus, we compare the performance of models with different tether connection designs, based on the platform motions, nacelle velocity, nacelle accelerations, resonant behaviors, and the damping of the coupled systems. The results of these comparisons demonstrate the advantage of the optimized SWAY model with the swivel connection. From these analyses, we prove that the optimized SWAY model is a good candidate for deep water deployment.

Funder

American Bureau of Shipping

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3