Purification Effect of Sequential Constructed Wetland for the Polluted Water in Urban River

Author:

Bai Xueyuan,Zhu Xianfang,Jiang Haibo,Wang ZhongqiangORCID,He Chunguang,Sheng Lianxi,Zhuang JieORCID

Abstract

Constructed wetlands can play an active role in improving the water quality of urban rivers. In this study, a sequential series system of the floating-bed constructed wetland (FBCW), horizontal subsurface flow constructed wetland (HSFCW), and surface flow constructed wetland (SFCW) were constructed for the urban river treatment in the cold regions of North China, which gave full play to the combined advantages. In the Yitong River, the designed capacity and the hydraulic loading of the system was 100 m3/d and 0.10 m3/m2d, respectively. The hydraulic retention time was approximately 72 h. The monitoring results, from April to October in 2016, showed the multiple wetland ecosystem could effectively remove chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), total phosphate (TP), and suspended solids (SS) at average removal rates of 74.79%, 80.90%, 71.12%, 78.44%, and 91.90%, respectively. The removal rate of SS in floating-bed wetland was the largest among all the indicators (80.24%), which could prevent the block of sub-surface flow wetland effectively. The sub-surface flow wetland could remove the NH4-N, TN, and TP effectively, and the contribution rates were 79.20%, 64.64%, and 81.71%, respectively. The surface flow wetland could further purify the TN and the removal rate of TN could reach 23%. The total investment of this ecological engineering was $12,000. The construction cost and the operation cost were $120 and $0.02 per ton of polluted water, which was about 1/3 to 1/5 and 1/6 to 1/3 of the conventional sewage treatment, respectively. The results of this study provide a technical demonstration of the restoration of polluted water in urban rivers in northern China.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3