Transparent Exopolymer Particle (TEPs) Dynamics and Contribution to Particulate Organic Carbon (POC) in Jaran Bay, Korea

Author:

Lee Jae Hyung,Lee Won Chan,Kim Hyung Chul,Jo Naeun,Jang Hyo Keun,Kang Jae Joong,Lee Dabin,Kim Kwanwoo,Lee Sang HeonORCID

Abstract

Transparent exopolymer particles (TEPs) are defined as acidic polysaccharide particles and they are influenced by various biotic and abiotic processes that play significant roles in marine biogeochemical cycles. However, little information on their monthly variation, relationship and contribution to particulate organic carbon (POC) is currently available particularly in coastal regions. In this study, the water samples were collected monthly to determine TEP concentrations and POC concentrations in a southern coastal region of Korea, Jaran Bay from April 2016 to March 2017. The TEP concentrations varied from 26.5 to 1695.4 μg Xeq L−1 (mean ± standard deviation (S.D.) = 215.9 ± 172.2 μg Xeq L−1) and POC concentrations ranged from 109.9 to 1201.9 μg L−1 (mean ± S.D. = 399.1 ± 186.5 μg L−1) during our observation period. Based on the 13C stable isotope tracer technique, monthly carbon uptake rates of phytoplankton ranged from 3.0 to 274.1 mg C m−2 h−1 (mean ± S.D. = 34.5 ± 45.2 mg C m−2 h−1). The cross-correlation analysis showed a lag-time of 2 months between chlorophyll a and TEP concentrations (r = 0.86, p < 0.01; Pearson’s correlation coefficient). In addition, we observed a 2 month lag-phased correlation between TEP concentrations and primary production (r = 0.73, p < 0.05; Pearson’s correlation coefficient). In Jaran Bay, the TEP contribution was as high as 78.0% of the POC when the TEP-C content was high and declined to 2.4% of the POC when it was low. These results showed that TEP-C could be a significant contributor to the POC pool in Jaran Bay.

Funder

National Institute of Oceanography and Fisheries

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3