Research on Evaluation Methods for Sustainable Enrollment Plan Configurations in Chinese Universities Based on Bayesian Networks

Author:

Wang Keqin12ORCID,Wang Ting3,Wang Tianyi3,Cai Zhiqiang3ORCID

Affiliation:

1. Undergraduate Academic Affairs Office, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Management, Northwestern Polytechnical University, Xi’an 710072, China

3. Department of Industrial Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Evaluation methods based on data-driven techniques and artificial intelligence for the sustainable enrollment plan configurations of Chinese universities have become a research hotspot in the field of higher education teaching reform. Enrollment, education, and employment constitute the three key pillars of talent cultivation in universities. However, due to an unclear understanding of their interconnection, universities have yet to establish robust quantitative relationship models, hindering the formation of an evaluation mechanism for sustainable enrollment plan configurations. This study begins by constructing a relevant indicator system and utilizing real enrollment data from a specific university. Through statistical methods such as correlation analysis, it systematically sorts out key variables and identifies seven effective indicators, including average admission score and first-time graduation rate. Subsequently, by using the increase or decrease in enrollment quotas for each major as the experimental target, evaluation models for sustainable enrollment plan configurations aimed at enhancing the advanced education rate are constructed using naïve Bayes networks and tree-augmented Bayesian networks; these are compared with three other classic machine learning methods. The accuracy of these models is evaluated through confusion matrices and receiver operating characteristic curves. Additionally, the Birnbaum importance analysis method is utilized to prioritize remaining variables, ultimately identifying the optimal combination strategy of indicators conducive to the sustainable development of the advanced education rate. The results indicate that the average admission score, transfer rate, and student/teacher ratio are the top 3 prognostic factors affecting the advanced education rate, with the TAN model achieving an accuracy of 96.49%, thus demonstrating good reliability.

Funder

Key Research Project on Undergraduate and Higher Continuing Education Teaching Reform in Shaanxi Province

Key Research Project on Educational Teaching Reform at Northwestern Polytechnical University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3