Optimization of Coagulation to Remove Turbidity from Surface Water Using Novel Nature-Based Plant Coagulant and Response Surface Methodology

Author:

Shahzadi Fakhara1,Haydar Sajjad1,Tabraiz Shamas23ORCID

Affiliation:

1. Institute of Environmental Engineering & Research (IEER), University of Engineering & Technology (UET), Lahore 54890, Pakistan

2. Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK

3. Section of Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK

Abstract

Plant-based natural coagulants are considered potential alternatives to chemical coagulants. These are eco-friendly, non-toxic, and produce less sludge compared to chemical coagulants. This study aims to evaluate the coagulation potential of a novel plant-based coagulant Sorghum for canal water treatment. In addition, a coagulant aid, i.e., Aloe Vera, was also tested to examine any further increase in turbidity removal through a jar test apparatus. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to characterize the coagulants. The experiment was designed using response surface methodology (RSM). When used alone, Sorghum resulted in a maximum turbidity removal of 87.73% at pH 2 and a dose of 40 mg/L, while the combination of Sorghum and Aloe Vera resulted in a turbidity removal of 84.2% at pH 2.7, and the doses of Sorghum and Aloe Vera were 17.1 mg/L and 0.9% (v/v), respectively. Thus, the Sorghum dose was significantly reduced when Aloe Vera was used in combination. At a pH of 7, Sorghum achieved 54% turbidity removal at a dose of 55.7 mg/L. Analyses of variance revealed that pH plays a more vital role in the removal of turbidity than the coagulant dose. FTIR and SEM analyses revealed that adsorption is the dominant coagulation mechanism for plant-based coagulants. The Sorghum powder exhibited carboxylic, amine, and carbonyl groups that functioned as active adsorption sites for suspended solids. In a similar vein, the coagulant aid Aloe Vera gel facilitated the adsorption process by fostering intermolecular hydrogen bonding between suspended particles and amine groups present within the gel.

Publisher

MDPI AG

Reference40 articles.

1. Walker, D., Baumgartner, D., Gerba, C., and Fitzsimmons, K. (2019). Environmental and Pollution Science, Elsevier.

2. Jordan’s water resources: Technical perspective;Water Int.,1992

3. Sewage land disposal and unpaved drains: Threat to groundwater quality;Tabraiz;Desalination Water Treat.,2016

4. Seasonal variations in dissolved organic matter concentration and composition in an outdoor system for bank filtration simulation;Zeeshan;J. Environ. Sci.,2024

5. Flocculation and antibacterial performance of dual coagulant system of modified cassava peel starch and alum;Asharuddin;J. Water Process Eng.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3