Estimation of Corn Net Primary Productivity and Carbon Sequestration Based on the CASA Model: A Case Study of the Fen River Basin

Author:

Zhang Zhiqiang1,Huo Lijuan1,Su Yuxin1,Shen He2,Yang Gaiqiang13ORCID

Affiliation:

1. School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. School of Geography and Tourism, Shaanxi Normal University, Xi’an 710062, China

3. Agricultural Hydropower Department, Department of Water Resources of Shanxi Province, Taiyuan 030002, China

Abstract

The utilization of remote sensing technology to assess changes in crop net primary productivity (NPP), biomass, and carbon sequestration within the Fen River Basin, a crucial agricultural region in China, is important for achieving agricultural modernization, enhancing ecological environment quality, and obtaining carbon neutrality objectives. This study employed satellite remote sensing and the Carnegie–Ames–Stanford approach (CASA) model as research methods to investigate the temporal and spatial distribution characteristics of corn NPP in the Fen River Basin. Correlation analysis was conducted to examine the response of corn NPP to various environmental factors in the region, while aboveground biomass and carbon sequestration of corn were estimated using a biomass inversion model driven by NPP and principles of photosynthesis in green plants. The findings revealed that, from a temporal perspective, corn NPP in the Fen River Basin exhibited a unimodal variation pattern, with an average value of 368.65 gC/m2. Spatially, the corn NPP displayed a discernible differentiation pattern, with the highest values primarily observed in the middle reaches of the Fen River Basin. Throughout the spatial and temporal variations in corn NPP during 2011–2020, the carbon sequestration capacity of corn exhibited an upward trend, particularly since 2017. The corn NPP displayed a positive correlation with temperature and precipitation. The response to solar radiation was mildly negative and a mildly positive correlation. In 2020, the aboveground biomass and carbon sequestration of corn followed a normal distribution, with the highest values concentrated in the northwestern part of the lower Fen River.

Funder

National Natural Science Foundation of China

Special Fund for Science and Technology Innovation Teams of Shanxi Province

Scientific and Technological Cooperation and Exchange Project of Shanxi Province

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3