A Hybrid Modeling Approach for Estimating the Exposure to Organophosphate Pesticide Drift in Sangamon County, Illinois

Author:

El Afandi Gamal1ORCID,Ismael Hossam1ORCID,Fall Souleymane1ORCID

Affiliation:

1. College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA

Abstract

According to estimates from the World Health Organization (WHO), organophosphate pesticides are responsible for approximately 300,000 deaths worldwide. In the United States, documented cases of organophosphate pesticide exposure number around 8000, with a small number of fatalities occurring annually. The health risks associated with these pesticides affect those living in agricultural areas, as well as farmers and pesticide applicators. Despite the intervention of government agencies in Illinois to regulate pesticide application, studies have shown that these pesticides remain present in the soil, crops, water, and air. Urban-agricultural interface communities around Sangamon County exhibit significant levels of air pollution due to pesticide spray drift, although the lack of reliable pesticide data poses a challenge in estimating the extent of the problem. Therefore, developing novel strategies to reduce the impact of pesticides on environmental health is a critical and effective research area. Currently, new, dependable models and methods are being developed to calculate spray drift and mitigate its effects. The primary objective of this study was to investigate whether and to what extent organophosphate pesticide spray drifts into urban-agricultural interface communities in Sangamon County, Illinois. To achieve this, the current study employed an integrated approach that combined the capabilities of the HYSPLIT and AgDRIFT models to evaluate organophosphate pesticide spray drifting at both the field- and county-level scales. In the absence of precise pesticide quantity data, this novel approach allowed for field simulations within identified exposure drift zones. The preliminary findings indicate that all residential areas close to agricultural areas are at risk of pesticide drift, as buffer zones do not exceed 25 m. Furthermore, of the 34 water bodies (rivers, lakes, streams, and drains) in the 30,200-acre study region, 12 are within the high-drift zone for pesticide spray drift from corn and soybean fields. Finally, the potential for organophosphate pesticide drift was present in approximately 106 buildings, covering an area of 10,300 km2.

Funder

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3