On the Effects of InSAR Temporal Decorrelation and Its Implications for Land Cover Classification: The Case of the Ocean-Reclaimed Lands of the Shanghai Megacity

Author:

Ma GuanyuORCID,Zhao Qing,Wang Qiang,Liu Min

Abstract

In this work, we focused on the ocean-reclaimed lands of the Shanghai coastal region and we evidenced how, over these areas, the interferometric synthetic aperture radar (InSAR) coherence maps exhibit peculiar behavior. In particular, by analyzing a sequence of Sentinel-1 SAR InSAR coherence maps, we found a significant coherence loss over time in correspondence to the ocean-reclaimed platforms that are substantially different from the coherence loss experienced in naturally-formed regions with the same type of land cover. We have verified whether this is due to the engineering geological conditions or the soil consolidation subsidence in ocean-reclaimed region. In this work, we combine the information coming from InSAR coherence maps and the retrieved temporal decorrelation model with that obtained by using optical Sentinel-2 data, and we performed land cover classification analyses in the zone of the Pudong International Airport. To estimate the accuracy of utilizing InSAR coherence information for land cover classification, in particular, we have analyzed what causes the difference of the InSAR coherence loss with the same type of land cover. The presented results show that the coherence models can be useful to distinguish roads and buildings, thus enhancing the accuracy of land cover classification compared with that allowable by using only Sentinel-2 data. In particular, the accuracy of classification increases from 75% to 86%.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3