Electrodeposition of Tin-Reduced Graphene Oxide Composite from Deep Eutectic Solvents Based on Choline Chloride and Ethylene Glycol

Author:

Costovici Stefania,Pantazi AidaORCID,Balan Danut,Cojocaru Anca,Visan Teodor,Enachescu MariusORCID,Anicai LianaORCID

Abstract

Some experimental results regarding the direct electrodeposition of tin-reduced graphene oxide composite (Sn-rGO) compared to the electrodeposition of tin metal (Sn) from a deep eutectic solvent (DES), namely using choline chloride-ethylene glycol eutectic mixtures, are presented. Raman spectroscopy demonstrated that GO is also reduced during the tin electrodeposition. Scanning electron microscopy (SEM) confirmed the presence of incorporated graphene related material in the composite film. X-ray diffraction patterns showed that the presence of rGO in the deposit diminished preferred orientation of Sn growth along the planes (101), (211), (301), and (112). The analysis of current-time transients involving Scharifker & Hills model has shown that Sn-rGO composite deposition process corresponds to a nucleation and tridimensional growth controlled by diffusion, with nucleation evolving from progressive to instantaneous upon increasing the overpotential. Diffusion coefficients at 25 °C of 9.4 × 10−7 cm2 s−1 for Sn(II) species in the absence and of 14.1 × 10−7 cm2 s−1 in the presence of GO, were determined. The corrosion performance has been assessed through the analysis of the recorded potentiodynamic polarization curves and of the electrochemical impedance spectra during continuous immersion in aerated 0.5 M NaCl aqueous solution at 25 °C for 144 h. A slight improvement of the corrosion performance in the case of the Sn-rGO composite coatings was noticed, as compared to pure Sn ones. Furthermore, the solderability performance has been evaluated. The solder joints showed a proper adhesion to the substrate with no fractures, and wetting angles around 44° have been determined, suggesting adequate solderability characteristics.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior Si A Cercetarii Stiintifice Universitare

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3