Effect of Deep Cryogenic Treatment on Wear Behavior of Cold Work Tool Steel

Author:

Essam Mahmoud A.1,Shash Ahmed Y.23,El-Fawakhry Mohamed Kamal4,El-Kashif Emad2,Megahed Hassan2

Affiliation:

1. Mechanical Engineering Department, Higher Technological Institute (HTI), 10th of Ramadan City 44629, Egypt

2. Mechanical Design and Production Department, Faculty of Engineering, Cairo University, Cairo 12613, Egypt

3. Faculty of Engineering and Materials Science, German University in Cairo, Cairo 12613, Egypt

4. Steel and Ferroalloys Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 401123, Egypt

Abstract

Shock resisting cold work tool steel is one of the most applicable steels for several applications such as cutting sheets, chisels, hammers, etc. It has been categorized according to its characteristic properties into different categories as hot and cold work tool steel. This work aims to study the effects of conventional and deep cryogenic treatment (DCT) on shock-resistant cold work tool steel. In this study, three alloys were cast and prepared with different carbides forming elements such as vanadium (V) and niobium (Nb). The samples were quenched in water at 900 ℃ followed by a tempering treatment at 200 ℃  for 30 min. After quenching in water, the other samples were subjected to DCT at −196 ℃  for a 5-h soaking time, followed by tempering at 200 ℃  for 30 min. To study the wear behavior of the three heats, pin-on-disc tests were used, where the sliding speed was kept constant at a value of 0.5 m/s. The normal applied loads during the wear test were 50 N and 100 N. In order to understand the wear behavior, wear tracks were studied by scanning electron microscopy, coefficient of friction and weight loss were evaluated. The results showed that the lowest average coefficient of friction was achieved by a sample of steel 3 with quenching + DCT at a load of 100 N of load by value of 0.33. A sample of steel 3 at load 50 N achieved the lowest weight loss by using DCT plus tempering. On the other hand, a sample of steel 3 achieved the lowest weight loss at 100 N by using quenching + DCT.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3