Parameters Optimization and Repeatability Study on Low-Weldable Nickel-Based Superalloy René 80 Processed via Laser Powder–Bed Fusion (L-PBF)

Author:

Martelli Pietro Antonio12ORCID,Sivo Antonio12ORCID,Calignano Flaviana234ORCID,Bassini Emilio124ORCID,Biamino Sara124ORCID,Ugues Daniele124

Affiliation:

1. Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso duca degli Abruzzi 24, 10129 Turin, Italy

2. Centro Interdipartimentale Integrated Additive Manufacturing IAM@PoliTO, Polytechnic of Turin, Corso Castelfidardo 51, 10138 Turin, Italy

3. Department of Management and Production Engineering (DIGEP), Polytechnic of Turin, Corso duca degli Abruzzi 24, 10129 Turin, Italy

4. Consorzio Nazionale della Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy

Abstract

This work aims to investigate the processability of René 80 via laser powder–bed fusion (L-PBF). René 80 is a poorly weldable Ni-superalloy, currently processed via investment casting to fabricate turbine blades working at an operating temperature of about 850 °C. The L-PBF parameters optimization aims to increase part integrity and enhance processing repeatability. This part was tackled by creating a complete design of experiments (DOE) in which laser power, scan speed and hatching distance were varied accordingly. Optimizing the abovementioned parameters minimized the crack density and pore area fraction. Hence, five parameter sets leading to a crack density lower than 100 µm/mm2 and a pore fraction between 0.045% and 0.085% were selected. Furthermore, the intra-print repeatability was studied by producing three specimens’ repetitions for each optimal set of parameters in the same build. The porosity value obtained was constant among repetitions, and the crack density (around 75 µm/mm2) had a slight standard deviation. The third step of the research assessed the inter-prints repeatability by producing a replica of the five selected parameter sets in a different build and by comparing the results with those studied previously. According to this latter study, the porosity fraction (ca. 0.06%) was constant in intra- and inter-print conditions. Conversely, crack density was lower than 100 µm/mm2 only in three sets of parameters, regardless of the intra- or inter-build cross-check. Finally, the best parameter set was chosen, emphasizing the average flaw fraction (least possible value) and repeatability. Once the optimal densification of the samples was achieved, the alloy’s microstructural features were also investigated.

Funder

Clean Sky 2 Joint Undertaking

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3