Tannic Acid Coatings to Control the Degradation of AZ91 Mg Alloy Porous Structures

Author:

Spriano SilviaORCID,Dmitruk AnnaORCID,Naplocha Krzysztof,Ferraris SaraORCID

Abstract

Porous structures of magnesium alloys are promising bioimplants due to their biocompatibility and biodegradability. However, their degradation is too rapid compared to tissue regeneration and does not allow a progressive metal substitution with the new biological tissue. Moreover, rapid degradation is connected to an accelerated ion release, hydrogen development, and pH increase, which are often causes of tissue inflammation. In the present research, a natural organic coating based on tannic acid was obtained on Mg AZ91 porous structures without toxic reagents. Mg AZ91 porous structures have been prepared by the innovative combination of 3D printing and investment casting, allowing fully customized objects to be produced. Bare and coated samples were characterized using scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS), fluorescence microscopy, Fourier transformed infrared spectroscopy (FTIR), tape adhesion test, Folin–Ciocalteu, and degradation tests. Different parameters (solvent, dipping time) were compared to optimize the coating process. The optimized coating was uniform on the outer and inner surfaces of the porous structures and significantly reduced the material degradation rate and pH increase in physiological conditions (phosphate-buffered saline—PBS).

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3