Utilizing Artificial Intelligence Approaches to Determine the Shear Strength of Steel Beams with Flat Webs

Author:

Elamary Ahmed S.1,Mohamed Mohamed A.2,Sharaky Ibrahim A.1ORCID,Mohamed Abdou K.3,Alharthi Yasir M.1ORCID,Ali Mahrous A. M.4

Affiliation:

1. Civil Engineering Department, College of Engineering, Taif University, Taif 21944, Saudi Arabia

2. Electrical Department, Faculty of Engineering, Al-Azhar University, Qena 83513, Egypt

3. Civil Department, Faculty of Engineering, Al-Azhar University, Qena 83513, Egypt

4. Mining and Petroleum Department, Faculty of Engineering, Al-Azhar University, Qena 83513, Egypt

Abstract

Steel beams’ shear strength is one of the most important factors that influence how quickly webs buckle. Despite extensive studies having been performed over the previous three decades, the existing procedures did not achieve the necessary reliability to predict the ultimate shear resistance of plate girders. New techniques called Learner Techniques have started to be used over the last few years; these techniques were applied to calculate the steel beam shear strength. In this study, a Regression Learner Techniques model was built using data from 100 test results from previously published research. Based on the geometric and material properties of the web and flanges available in the published tests, a model was built using Artificial Neural Networks. Based on sensitivity analysis, a Cascade Forward Backpropagation Neural Networks (CFBNN) approach was utilized to anticipate the shear strength of steel beams. The proposed models outperformed current hybrid artificial intelligence models developed using the same collected datasets and demonstrated to accurately predict the ultimate shear strength. The performance of the models was evaluated using a range of statistical assessment methods, which led to a valuable conclusion. The CFBNN model achieved the highest root mean square (R2 = 0.95). The results corresponding to each test were verified by specimen shear strength values calculated by a theoretical approach. The resultant maximum shear force obtained by the proposed modified equation was compared with the experimental results and the shear force was estimated using two different approaches proposed by the European code. Finally, two approaches were used to verify the proposed model. The first approach was the data reported from an experimental shear test program conducted by the authors, and the second was the results of the shear values acquired experimentally by other researchers. Based on the test results of the previous studies and the current work, the suggested model gives an adequate degree of accuracy for estimating the shear strength of steel beams.

Funder

Taif University Researchers

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Shear Capacity Prediction of Steel Beams with Machine Learning Techniques;Arabian Journal for Science and Engineering;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3