The Formation Mechanism of a Multilayer-Structure Oxide Film during the Oxidation of FeCrAl in Air at 700 °C

Author:

Gao Zichen12,Wang Xinyu3,Zhou Danna3,Wu Qingsheng34,Li Chunjing34,Song Liangliang3,Liu Shaojun12

Affiliation:

1. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. University of Science and Technology of China, Hefei 230026, China

3. International Academy of Neutron Science, Qingdao 266199, China

4. National Institute of Neutronic Energy Co., Ltd., Qingdao 266199, China

Abstract

A protective oxide film is the key to the corrosion resistance of the FeCrAl alloy. The mechanism of the formation of the multilayer oxide film of the FeCrAl alloy in 700 °C air was explored by studying the structure evolution of the oxide film and the oxidation kinetics of FeCrAl. The results show that a multilayer oxide layer is formed on the surface of the FeCrAl alloy after 1344 h, with a (Fe,Cr)2O3 layer, an Al-rich oxide layer, an Al-depleted zone, and a new Al-rich oxide layer sequentially arranged from the surface to the matrix. This indicates that the Al element plays an important role in the formation of the oxide film. The Al in the matrix is depleted to form the Al-rich oxide layer, resulting in the Al-depleted zone. The new Al-rich oxide layer is formed under the Al-depleted zone by internal oxidation. It should be noted that the precipitation of the AlN phase in the matrix is observed, which might be a probable factor for the Al-depleted zone in the matrix.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Laoshan Laboratory

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3