Vacancy Formation Energy as an Effective Descriptor for the Catalytic Oxidation of CO by Au Nanoparticles

Author:

Zhang Zhiwei1,Meng Kun1,Ou Peng23,Wu Haijun4,Zhang Yannan1,Yu Xiaohua1ORCID

Affiliation:

1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

3. Kunming Precision Machinery Research Institute, Kunming 650118, China

4. Special Materials Division, Kunming Institute of Precious Metals, Kunming 650106, China

Abstract

Gold nanoparticles (AuNPs) have attracted wide attention in the field of catalysis because of their excellent stability and electrical properties. Herein, an accurate vacancy formation energy model based on nanothermodynamics theory is developed, the intrinsic correlation between vacancy formation energy and CO oxidation activity is investigated in detail, and the relationship between vacancy formation energy and activity-influencing factors such as particle size, temperature, and crystal surface is analyzed. The results show an excellent linear relationship between vacancy formation energy and CO oxidation activity, with an accuracy of up to 95%. In addition, the vacancy formation energy also corresponds well to the influencing factors of size, temperature, and crystal surface, and its correspondence is particularly accurate when the size is below 20 nm and the temperature is below 500 K. It can serve as a normalized expression of the three influencing factors. Moreover, the present research reveals that the essence of the vacancy formation energy descriptor is the chemical bond energy, and gives its correspondence with the coordination number, diffusion activation energy, and adsorption energy (with a decrease in vacancy formation energy, the adsorption effect of AuNPs is stronger), further demonstrating the feasibility and accuracy of the vacancy formation energy as a descriptor. This research not only overcomes the problem that traditional single-influence descriptors are difficult to apply in complex environments but also has considerable potential for defect modulation.

Funder

the Kunming University of Science and Technology “Double First-Class” Joint Special Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3