Investigation of the Dynamic Strain Aging Effect in Austenitic Weld Metals by 3D-DIC

Author:

Lescur Amke12ORCID,Stergar Erich1,Lim Jun1,Hertelé Stijn2ORCID,Petrov Roumen H.23ORCID

Affiliation:

1. Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium

2. Department of Electromechanical Systems & Metal Engineering, Ghent University, 9000 Ghent, Belgium

3. Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract

Austenitic stainless steels similar to type AISI 316L are widely used structural materials in current and future nuclear reactors. Careful development and characterization of these materials and their welds is needed to verify the structural integrity of large-scale multicomponent structures. Understanding the local deformation behavior in heterogeneous materials and the mechanisms involved is key to further improve the performance and reliability of the materials at the global scale and can help in developing more accurate models and design rules. The full-field 3D digital image correlation (3D-DIC) technique was used to characterize two 316L multi-pass welds, based on cylindrical uniaxial tensile tests at room temperature, 350 °C, and 450 °C. The results were compared to solution annealed 316L material. The inhomogeneous character and dynamic behavior of the 316L base and weld materials were successfully characterized using 3D-DIC data, yielding high-quality and accurate local strain calculations for geometrically challenging conditions. The difference in character of the dynamic strain aging (DSA) effect present in base and weld materials was identified, where local inhomogeneous straining in weld material resulted in discontinuous type A Portevin–Le Châtelier (PLC) bands. This technique characterized the difference between local and global material behavior, whereas standard mechanical tests could not.

Funder

European Commission HORIZON 2020 Framework Program

Belgian government

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3