Microscale Strain Localizations and Strain-Induced Martensitic Phase Transformation in Austenitic Steel 301LN at Different Strain Rates

Author:

Pun Lalit1ORCID,Soares Guilherme Corrêa1ORCID,Bhusare Suprit1,Isakov Matti1ORCID,Hokka Mikko1

Affiliation:

1. IMPACT—Multiscale Mechanics Research Group, Engineering Materials Science, Materials Science and Environmental Engineering, Tampere University, 33014 Tampere, Finland

Abstract

Microscopic strain and strain-induced phase transformation during plastic deformation in metastable austenitic steel were investigated at different strain rates. Quasi in-situ tension tests were performed sequentially with well-defined elongation intervals at room temperature at strain rates of 10−3 s−1 and 10−1 s−1. The tests were monitored by high-resolution optical imaging with a microscopic lens at a resolution of 0.23 µm/pixel. The macroscopic temperature was also measured with an infrared (IR) camera. The microstructure-level strain localizations were observed on the surface of the etched specimens by means of microscale digital image correlation (µDIC). Additionally, the microstructure was characterized by electron backscatter diffraction (EBSD) at the same location before and after deformation. The results of the study indicated that microscopic strain localizations favored the formation of α′-martensite particles. At the lower strain rate, high local strain concentrations formed at several locations in the microstructure, correlating with the areas where the formation of large martensite islands occurred. Martensite particles of various sizes formed nearby each other at the lower strain rate, whereas at the higher strain rate, martensite islands remained small and isolated. Although the macroscopic increase in temperature at both the studied strain rates was very low, at the higher strain rate, local heating on the microscopic scale could take place at the newly nucleated martensite embryos. This inhibited the further growth of the martensite particles, and local strain distribution also remained more homogeneous than at the lower strain rate.

Funder

Tampere University graduate school

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3