Aluminum Scrap to Hydrogen: Complex Effects of Oxidation Medium, Ball Milling Parameters, and Copper Additive Dispersity

Author:

Buryakovskaya Olesya A.ORCID,Suleimanov Musi Zh.,Vlaskin Mikhail S.ORCID,Kumar VinodORCID,Ambaryan Grayr N.ORCID

Abstract

An effective combination of oxidation medium, ball milling parameters, and copper additive disperstiy ensuring fast aluminum scrap reaction with high hydrogen yield, was suggested. Different milling parameters (5, 10, and 15 mm steel balls; 1 and 2 h; unidirectional and bidirectional rotation modes) were tested for Al-10 wt.% Cu (50–70 μm) composition. The samples milled with 5 (2 h) and 10 mm (1 and 2 h) balls contained undesirable intermetallic phases Al2Cu and Cu9Al4, while those activated with 15 mm balls (1 h) provided the second-finest powder and best preservation of the original Cu and Al phases. Among the tested (at 60 °C) 2 M solutions NaCl, LiCl, KCl, MgCl2, ZnCl2, BaCl2, CaCl2, NiCl2, CoCl2, FeCl2, and AlCl3, the first six appeared to be almost useless (below 4% hydrogen yield), the following four provided better results, and the ultimate 91.5% corresponded to AlCl3. Samples with Cu dispersity of 50–100 nm, 1–19, 50–70, and 150–250 μm, and with no additive, were milled under the optimal parameters and tested in AlCl3. Their total yields were similar (~90–94%), while reaction rates differed. The highest rate was obtained for the sample modified with 50–70 μm powder.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3