Achieving an Excellent Strength and Ductility Balance in Additive Manufactured Ti-6Al-4V Alloy through Multi-Step High-to-Low-Temperature Heat Treatment

Author:

Wang Changshun1,Lei Yan1,Li Chenglin1ORCID

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

Abstract

Selective laser melting (SLM) can effectively replace traditional processing methods to prepare parts with arbitrary complex shapes through layer-by-layer accumulation. However, SLM Ti-6Al-4V alloy typically exhibits low ductility and significant mechanical properties anisotropy due to the presence of acicular α′ martensite and columnar prior β grains. Post-heat treatment is frequently used to obtain superior mechanical properties by decomposing acicular α′ martensite into an equilibrium α + β phase. In this study, the microstructure and tensile properties of SLM Ti-6Al-4V alloy before and after various heat treatments were systematically investigated. The microstructure of the as-fabricated Ti-6Al-4V sample was composed of columnar prior β grains and acicular α′ martensite, which led to high strength (~1400 MPa) but low ductility (~5%) as well as significantly tensile anisotropy. The single heat treatment samples with lamellar α + β microstructure exhibited improved elongation to 6.8–13.1% with a sacrifice of strength of 100–200 MPa, while the tensile anisotropy was weakened. A trimodal microstructure was achieved through multi-step high-to-low-temperature (HLT) heat treatment, resulting in an excellent combination of strength (~1090 MPa) and ductility (~17%), while the tensile anisotropy was almost eliminated. The comprehensive mechanical properties of the HLT samples were superior to that of the conventional manufactured Ti-6Al-4V alloy.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3