Affiliation:
1. Micro-Satellite Research Center, Zhejiang University, Hangzhou 310007, China
2. Huanjiang Laboratory, Shaoxing 311899, China
3. Key Laboratory of Micro-Nano Satellite Research of Zhejiang Province, Hangzhou 310058, China
Abstract
With the development of microsatellite technology, the heat generated by onboard components is increasing, leading to a growing demand for improved thermal dissipation in small satellites. Metal powder additive manufacturing technology offers the possibility of customizing and miniaturizing heat pipes to meet the specific requirements of small satellites. This article introduces a small-scale heat pipe designed using selective laser melting (SLM) technology. The heat pipe’s material, structure, and internal working fluid were determined based on mission requirements. Subsequently, the SolidWorks 2021 software was used for heat pipe modeling, and the ANSYS 2021R2 finite element analysis software was employed to simulate the heat transfer performance of the designed heat pipe, confirming its feasibility. The heat pipe’s structure was optimized using multi-objective regression analysis, considering various structural parameters, such as the channel diameter, vapor chamber height, and narrow gap width. The simulation results demonstrate that the optimized heat pipe achieved a 10.5% reduction in thermal resistance and an 11.6% increase in equivalent thermal conductivity compared to the original heat pipe. Furthermore, compared to conventional metal heat-conducting rods, the optimized heat pipe showed a 38.5% decrease in thermal resistance and a 62.19% increase in equivalent thermal conductivity. The heat pipe was then fabricated using a 3D printer (EOS M280), and a vacuum experimental system was established to investigate its heat transfer characteristics. The experimental results show that the heat pipe operated most efficiently at a heating power of 20 W, reached its maximum heat transfer capacity at 22 W, and had an optimal fill ratio of 30%. These results highlight the excellent performance of the heat pipe and the promising application prospects for SLM technology in the field of small satellites.
Subject
General Materials Science
Reference33 articles.
1. Approach for Combining spacecraft attitude and thermal control systems;Varatharajoo;J. Spacecr. Rocket.,2010
2. Swanson, T.D. (2004, January 21–25). Thermal Control Technologies for Complex Spacecraft. Proceedings of the 13th International Heat Pipe Conference, Shanghai, China.
3. Thermal analysis of micro heat pipe;Khrustalev;J. Heat Transf.,1994
4. Thermal characteristics of conventional and flat miniature axially grooved heat pipe;Khrustalev;J. Heat Transf.,1995
5. Study on flow and heat transfer characteristics of heat pipe with axial “Ω”-shaped microgrooves;Chen;Int. J. Heat Mass Transf.,2009
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献