Frictional Wear and Thermal Fatigue Properties of Die Steel after Ultrasound-Assisted Alloying

Author:

Hu Chunhua1,Wei Yihao1,Ji Xinghao1,Liu Yu2

Affiliation:

1. Key Laboratory of Automobile Materials, School of Materials Science and Engineering, Jilin University, Changchun 130025, China

2. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China

Abstract

The surface layer of 8407 die steel was strengthened using the combination of ultrasonic surface rolling and high-energy ion implanting in the present work. The strengthened layer was then characterized via microstructure observation, composition analysis, and hardness test. After that, the frictional wear and thermal fatigue properties of high-energy ion implanting specimens and composite-reinforced specimens were compared. Results show that the pretreatment of specimens with ultrasonic surface rolling causes grain refinement in the material surface, which promotes the strengthening effect of high-energy ion implanting. The wear volume of composite-reinforced specimens at medium and high frequencies is reduced by about 20%, and the wear resistance of these specimens is significantly improved with a lower friction coefficient and wear volume at moderate and high frequencies in alternating load friction experiments. Meanwhile, the thermal fatigue crack depth of composite-reinforced specimens is reduced by about 47.5%, which effectively prevents the growth of thermal cracks in the surface, thus improving the curing ability of the implanted elements. Therefore, composite strengthening of the mold steel surface is conducive to improving the cycle life, ensuring accuracy, effectively hindering the expansion of thermal cracks, and saving the cost of production.

Funder

Key Scientific and Technological Research and Development Projects of Jilin Provincial Science and Technology Department

Jilin Province Science and Technology Department innovation platform and talent special project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3