Affiliation:
1. Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
Abstract
In the wake of economic and population growth, increased wastewater production poses a challenge related to sewage sludge treatment, which is problematic given its high moisture content, amount, and hazardous characteristics. This study focuses on the hydrothermal carbonization of sewage sludge to produce carbonous material–hydrochar, which may be an alternative to fossil fuels. The effect of process parameters, namely, temperature (180, 240, 300 °C) and duration time (30, 90, 180 min), on hydrochar properties (proximate and ultimate analysis, heating values) and process performance were studied. Obtained results indicate and confirm that hydrothermal carbonization, especially temperature increase, improves the fuel properties of carbonized sewage sludge. The highest low heating value was obtained for hydrochar derived at 300 °C in 180 min (~23 MJ × kg−1). The highest energy gain was noted for hydrochar derived at 240 °C in 180 min (~23%). As well as relatively high mass and energy yield in comparison to other hydrochars, these parameters are considered the most favorable for sewage sludge hydrothermal carbonization. However, high energy consumption (over 1300 kJ × g−1) suggests that more research on the process’s economical efficacy is required.
Funder
Wrocław University of Environmental and Life Sciences
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献