Nicotinic Acetylcholine Receptor Subunit Alpha-5 Promotes Radioresistance via Recruiting E2F Activity in Oral Squamous Cell Carcinoma

Author:

Lin ,Lee ,Kuei ,Lin ,Lu ,Lee ,Chang ,Wang ,Hsu ,Lin

Abstract

Radiotherapy is commonly used to treat patients with oral squamous cell carcinoma (OSCC), but a subpopulation of OSCC patients shows a poor response to irradiation treatment. Therefore, identifying a biomarker to predict the effectiveness of radiotherapy in OSCC patients is urgently needed. In silico analysis of public databases revealed that upregulation of CHRNA5, the gene encoding nicotinic acetylcholine receptor subunit alpha-5, is extensively detected in primary tumors compared to normal tissues and predicts poor prognosis in OSCC patients. Moreover, CHRNA5 transcript level was causally associated with the effective dose of irradiation in a panel of OSCC cell lines. Artificial silencing of CHRNA5 expression enhanced, but nicotine reduced, the radiosensitivity of OSCC cells. Gene set enrichment analysis demonstrated that the E2F signaling pathway is highly activated in OSCC tissues with high levels of CHRNA5 and in those derived from patients with cancer recurrence after radiotherapy. CHRNA5 knockdown predominantly suppressed E2F activity and decreased the phosphorylation of the Rb protein; however, nicotine treatment dramatically promoted E2F activity and increased Rb phosphorylation, which was mitigated after CHRNA5 knockdown in OSCC cells. Notably, the signature combining increased mRNA levels of CHRNA5 and the E2F signaling gene set was associated with worse recurrence-free survival probability in OSCC patients recorded to be receiving radiotherapy. Our findings suggest that CHRNA5 is not only a useful biomarker for predicting the effectiveness of radiotherapy but also a druggable target to enhance the cancericidal effect of irradiation on OSCC.

Funder

Ministry of Science and Technology, Taiwan

Taipei Medical University Hospital

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3