Abstract
This work was focused on two particular phenomena contributing to a damage process of nodular cast iron under tensile stress: Internal destruction of graphite nodule and debonding at graphite/matrix (G-M) interface. The G-M debonding was analyzed depending on the phase characteristics of the metal matrix and with the increase in the distance of the observation field from the main crack surface. Typical morphological effects of decohesion in the graphite-matrix microregions related to an internal structure of graphite nodule were revealed and classified. The obtained results of the microscopic observations suggest that the path of both types of internal cracks in the graphite nodule passed through areas of weakened cohesion. Detailed microscopic observations allowed revealing some additional phenomena associated with G-M debonding along the G/M interface. In the most ductile of the tested alloys, with ferritic and ausferritic matrix, the G-M debonding was preceded by the formation of a layer of shifted graphene plates in the external envelope of the spheroid. In the alloys of polyphase pearlitic and ausferritic matrix, the revealed morphology of the G-M interface suggests that G-M debonding might be delayed by the interaction with some phase components as cementite lamellae and austenite plates.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献