Abstract
Hot stamping by partition heating of Al–Si coated boron steel sheets is currently utilized to produce parts of the car body-in-white with tailored microstructural and mechanical characteristics. This paper investigates the evolution of the Al–Si coating and its tribological and wear performances in the case of direct heating at the process temperatures of 700 °C, 800 °C, and 900 °C, skipping the preliminary austenitization as it may happen in the case of tailored tempered parts production. A specifically designed pin-on-disk configuration was used to reproduce at a laboratory scale the process thermo-mechanical cycle. The results show the morphological and chemical variation of the Al–Si coating with heating temperature, as well as that the friction coefficient, decreases with increased temperature. Furthermore, the results proved that the adhesive wear is the main mechanism at the lower temperature, while abrasive wear plays the major role at the higher temperature.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献