The Role of Substrate Surface Roughness on in-Pack Aluminization Kinetics of Ni-Base Superalloy

Author:

Nowak Wojciech J.ORCID,Tomków Małgorzata,Wierzba Patrycja,Gancarczyk Kamil,Wierzba Bartek

Abstract

The Ni-base superalloys facing high temperature require further protection against high temperature oxidation. One of the most common methods providing high temperature oxidation resistance is the production of aluminide layers (NiAl-coatings). It is known that the thickness of produced diffusion layer can be controlled by the temperature and time of aluminization process. However, no research on the effect of surface roughness on aluminization kinetics was conducted so far. Then, to elucidate the effect of surface roughness on aluminization kinetics, diffusion layers were obtained by an in-pack aluminization method on the IN 617 alloy with differently prepared surfaces, namely polished, ground using 220 grit SiC paper and 80 grit SiC paper. The obtained results revealed that different surface preparation does not affect the chemical and phase composition of produced layers. However, a strong influence of surface preparation method on aluminide layers thicknesses was observed. Namely, it was found that the increase in substrate surface roughness results in an increase of aluminization kinetics. The dependence between surface roughness and thickness of aluminide layers was found to be logarithmic. Moreover, it was found that the aluminization kinetics is influenced, especially at early stages of the aluminization process.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference29 articles.

1. Oxidation of Ni-Cr-Al Alloys Between 1100 °C and 1200 °C;Giggins;Solid State Sci.,1971

2. On the oxidation mechanism of Ni–Pt alloys at high temperatures;Danielewski;Corros. Sci.,2011

3. Calculation of Reactive-evaporation Rates of Chromia

4. Introduction to the High- Temperature Oxidation of Metal;Birks,2006

5. Shreir’s Corrosion;Nicholls,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3