In Vitro Eradication of Planktonic, Saliva and Biofilm Bacteria Using Lingonberry Extract as a Photosensitizer for Visible Light Plus Water-Filtered Infrared-A Irradiation

Author:

Klein Mia1,Al-Ahmad Ali1ORCID,Follo Marie2ORCID,Hellwig Elmar1,Vach Kirstin3ORCID,Chrubasik-Hausmann Sigrun4ORCID

Affiliation:

1. Department of Operative Dentistry and Periodontology, Medical Center of the University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany

2. Lighthouse Core Facility, Department of Medicine I, Medical Center of the University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115, 79106 Freiburg, Germany

3. Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Stefan-Meier-Straße 26, 79104 Freiburg, Germany

4. Institute of Forensic Medicine, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany

Abstract

Antimicrobial photodynamic treatment (aPDT) with visible light plus water-filtered infrared-A irradiation (VIS-wIRA) and natural single- or multi-component photosensitizers (PSs) was shown to have potent antimicrobial activity. The aim of this study was to obtain information on the antimicrobial effects of aPDT-VIS-wIRA with lingonberry extract (LE) against bacteria that play a role in oral health. Planktonic bacterial cultures of the Gram-positive E. faecalis T9, S. mutans DSM20523, S. oralis ATCC 35037 and S. sobrinus PSM 203513, the Gram-negative N. oralis 14F2 FG-15-7B, F. nucleatum ATCC 25586, and V. parvula DSM, the anaerobic F. nucleatum ATCC 25586 and V. parvula DSM 2008, and the total mixed bacteria from pooled saliva and supra- and subgingival plaques of volunteers were all treated and compared. aPDT-VIS-wIRA with LE as PS significantly (p < 0.008) reduced the growth of all tested Gram-positive, Gram-negative, as well as aerobic and anaerobic bacterial strains, whereas without irradiation no reductions were seen (p < 0.0001). NaCl, with or without irradiation, was ineffective. After treatment with CHX 0.2%, the highest killing rate (100%) was observed, and no bacteria (0 log10 CFU) were cultivable. The method also significantly reduced all of the bacteria present in saliva and in the gingival biofilms. Three-dimensional visualization of viable and non-viable microorganisms revealed that LE penetrated deeper into the cell wall layers than CHX 0.2%. LE was an appropriate PS for eradicating microorganisms with VIS-wIRA, either in their planktonic form or in saliva and gingival plaque biofilms. These results encourage further investigation in order to determine which LE compounds contribute to the photosensitizing effect and to evaluate the size of the effect on maintaining oral health.

Funder

German Research Foundation

Medical Faculty, University of Freiburg

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3