Assessing the Self-Purification Capacity of Surface Waters in Lake Baikal Watershed

Author:

Semenov Mikhail Yu.,Semenov Yuri M.,Silaev Anton V.,Begunova Larisa A.

Abstract

The removal of trace metals (TM), dissolved organic carbon (DOC), mineral nitrogen (Nmin.), and polycyclic aromatic hydrocarbons (PAHs) from the water of Lake Baikal and its tributaries was evaluated. The contaminant removal rate (CRR) and the contaminant removal capacity (CRC) were used as water self-purification parameters. The CRR was calculated as the difference between contaminant mass flow rates at downstream and upstream gauging stations. The CRC was calculated as the quotient of the CRR and the change in water discharge between downstream and upstream gauging stations. Whether the CRR and CRC have positive or negative values depends on whether contaminant release or removal occurs in the water body. The CRR depends on the size of the water body. The lowest and the highest CRRs observed for Baikal were equal to −15 mg/s (PAHs) to −7327 g/s (DOC), whereas the highest PAH and DOC removal rates observed for Selenga River (the major Baikal tributary) in summer were equal to −9 mg/s and −3190 g/s correspondingly. The highest PAH and DOC removal rates observed for small tributaries were equal to 0.0004 mg/s and −0.7 g/s respectively. The amplitude of annual CRR oscillations depends on contaminant abundance. The highest amplitude was typical for most abundant contaminants such as Nmin. and DOC. In unpolluted sections of the Selenga River the highest rates of N and C removal (−85 g/s and −3190 g/s, respectively) were observed in summer and the lowest rates (4 g/s and 3869 g/s, respectively) were observed in the spring. The lowest amplitude was typical for PAHs and some low-abundance TM such as V and Ni. The highest summer rates of V and Ni removal were equal to −378 mg/s and −155 mg/s respectively, whereas lowest spring rates are equal to 296 mg/s and 220 mg/s. The intermediate CRR amplitudes were typical for most abundant TM such as Sr, Al, and Fe. The spatial CRR variability depends on water chemistry and the presence of pollution sources. The lowest (up to 38 g/s) rates of Nmin. removal was observed for polluted lower Selenga sections characterized by low water mineralization and high DOC concentrations. The highest rates (−85 g/s) were observed for unpolluted upper sections. Seepage loss from the river to groundwater was also recognized as an important means of contaminant removal. The CRC values depend mostly on water residence time. The DOC removing capacity value of Baikal (−26 g/m3) were lower than those of Selenga in summer (−35 g/m3) but higher than the CRCs of all tributaries during the other seasons (from 30 mg/m3 to −10 g/m3).

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3