Bayesian Aggregation Improves Traditional Single-Image Crop Classification Approaches

Author:

Matvienko IvanORCID,Gasanov MikhailORCID,Petrovskaia AnnaORCID,Kuznetsov MaximORCID,Jana RaghavendraORCID,Pukalchik MariaORCID,Oseledets IvanORCID

Abstract

Accurate information about growing crops allows for regulating the internal stocks of agricultural products and drawing strategies for negotiating agricultural commodities on financial markets. Machine learning methods are widely implemented for crop type recognition and classification based on satellite images. However, field classification is complicated by class imbalance and aggregation of pixel-wise into field-wise forecasting. We propose here a Bayesian methodology for the aggregation of classification results. We report the comparison of class balancing techniques. We also report the comparison of classical machine learning methods and the U-Net convolutional neural network for classifying crops using a single satellite image. The best result for single-satellite-image crop classification was achieved with an overall accuracy of 77.4% and a Macro F1-score of 0.66. Bayesian aggregation for field-wise classification improved the result obtained using majority voting aggregation by 1.5%. We demonstrate here that the Bayesian aggregation approach outperforms the majority voting and averaging strategy in overall accuracy for the single-image crop classification task.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3