Integration of Hot Isostatic Pressing and Heat Treatment for Advanced Modified γ-TiAl TNM Alloys

Author:

Bernal DanielORCID,Chamorro XabierORCID,Hurtado IñakiORCID,Lopez-Galilea Inmaculada,Bürger David,Weber SebastianORCID,Madariaga Iñaki

Abstract

The conventional processing route of TNM (Ti-Nb-Mo) alloys combines casting and Hot Isostatic Pressing (HIP) followed by forging and multiple heat treatments to establish optimum properties. This is a time-consuming and costly process. In this study we present an advanced alternative TNM alloy processing route combining HIP and heat treatments into a single process, which we refer to as IHT (integrated HIP heat treatment), applied to a modified TNM alloy with 1.5B. A Quintus HIP lab unit with a quenching module was used, achieving fast and controlled cooling, which differs from the slow cooling rates of conventional HIP units. A Ti-42.5Al-3.5Nb-1Mo-1.5B (at.%) was subjected to an integrated two HIP steps at 200 MPa, one at 1250 °C for 3 h and another at 1260 °C for 1 h, both under a protective Ar atmosphere and followed by cooling at 30 K/min down to room temperature. The results were compared against the Ti-43.5Al-3.5Nb-1Mo-0.8B (at.%) thermomechanically processed in a conventional way. Applying IHT processing to the 1.5B alloy does indeed achieve good creep strength, and the secondary creep rate of the IHT processed materials is similar to that of conventionally forged TNM alloys. Thus, the proposed advanced IHT processing route could manufacture more cost-effective TiAl components.

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. Gamma Titanium Aluminide Alloys;Appel,2014

2. Titanium, Titanium Alloys, and Titanium Compounds;Sibum,2017

3. Advances in Gammalloy Materials–Processes–Application Technology: Successes, Dilemmas, and Future

4. Forged Intermetallic γ-TiAl Based Alloy Low Pressure Turbine Blade in the Geared Turbofan;Habel;Proceedings of the 13th World Conference on Titanium,2015

5. Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot-Workability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3