A Novel Microshear Geometry for Exploring the Influence of Void Swelling on the Mechanical Properties Induced by MeV Heavy Ion Irradiation

Author:

Gigax Jonathan G.,Chancey Matthew R.,Xie Dongyue,Kim HyosimORCID,Wang YongqiangORCID,Maloy Stuart A.ORCID,Li Nan

Abstract

Small disks are often the specimen of choice for exposure in nuclear reactor environments, and this geometry invariably limits the types of mechanical testing that can be performed on the specimen. Recently, shear punch testing has been utilized to evaluate changes arising from neutron irradiation in test reactor environments on these small disk specimens. As part of a broader effort to link accelerated testing using ion irradiation and conventional neutron irradiation techniques, a novel microshear specimen geometry was developed for use with heavy-ion irradiated specimens. The technique was demonstrated in pure Cu irradiated to 11 and 110 peak dpa with 10 MeV Cu ions. At 11 peak dpa, the Cu specimen had a high density of small voids in the irradiated region, while at 110 peak dpa, larger voids with an average void swelling of ~20% were observed. Micropillar and microshear specimens both exhibited hardening at 11 dpa, followed by softening at 110 dpa. The close alignment of the new microshear technique and more conventional micropillar testing, and the fact that both follow intuition, is a good first step towards applying microshear testing to a wider range of irradiated materials.

Funder

Los Alamos Laboratory Directed Research and Development

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shear deformation of pure-Cu and Cu/Nb nano-laminates using micromechanical testing;Scripta Materialia;2023-06

2. Behavior of Cu-Y2O3 and CuCrZr-Y2O3 composites before and after irradiation;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3