Heat Transport on Ultrashort Time and Space Scales in Nanosized Systems: Diffusive or Wave-like?

Author:

Sobolev S. L.,Dai Weizhong

Abstract

The non-Fourier effects, such as wave-like temperature propagation and boundary temperature jumps, arise in nanosized systems due to the multiple time and space scales nature of out-of-equilibrium heat transport. The relaxation to equilibrium occurs in successive time and space scales due to couplings between different excitations, whose relaxation times have different physical meanings and may differ significantly in magnitude. The out-of-equilibrium temperature evolution is described by a hierarchy of partial differential equations of a higher order, which includes both the diffusive and wave modes of heat transport. The critical conditions of transition from wave to diffusive modes are identified. We demonstrate that the answer to the question concerning which of these modes would be detected by experimental measurements may also depend on the accuracy of the experimental setup. Comparisons between the proposed approach and other non-Fourier models, such as the Guyer–Krumhansl and Jeffreys type, are carried out. The results presented here are expected to be useful for the theoretical and experimental treatment of non-Fourier effects and particularly heat wave phenomena in complex nanosized systems and metamaterials.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3