Performance Prediction of Cement Stabilized Soil Incorporating Solid Waste and Propylene Fiber

Author:

Zhang GenbaoORCID,Ding Zhiqing,Wang Yufei,Fu Guihai,Wang Yan,Xie Chenfeng,Zhang Yu,Zhao Xiangming,Lu Xinyuan,Wang Xiangyu

Abstract

Cement stabilized soil (CSS) yields wide application as a routine cementitious material due to cost-effectiveness. However, the mechanical strength of CSS impedes development. This research assesses the feasible combined enhancement of unconfined compressive strength (UCS) and flexural strength (FS) of construction and demolition (C&D) waste, polypropylene fiber, and sodium sulfate. Moreover, machine learning (ML) techniques including Back Propagation Neural Network (BPNN) and Random Forest (FR) were applied to estimate UCS and FS based on the comprehensive dataset. The laboratory tests were conducted at 7-, 14-, and 28-day curing age, indicating the positive effect of cement, C&D waste, and sodium sulfate. The improvement caused by polypropylene fiber on FS was also evaluated from the 81 experimental results. In addition, the beetle antennae search (BAS) approach and 10-fold cross-validation were employed to automatically tune the hyperparameters, avoiding tedious effort. The consequent correlation coefficients (R) ranged from 0.9295 to 0.9717 for BPNN, and 0.9262 to 0.9877 for RF, respectively, indicating the accuracy and reliability of the prediction. K-Nearest Neighbor (KNN), logistic regression (LR), and multiple linear regression (MLR) were conducted to validate the BPNN and RF algorithms. Furthermore, box and Taylor diagrams proved the BAS-BPNN and BAS-RF as the best-performed model for UCS and FS prediction, respectively. The optimal mixture design was proposed as 30% cement, 20% C&D waste, 4% fiber, and 0.8% sodium sulfate based on the importance score for each variable.

Funder

Key Project of Hunan Education Department

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3