High Lipid Content of Prey Fish and n−3 PUFA Peroxidation Impair the Thiamine Status of Feeding-Migrating Atlantic Salmon (Salmo salar) and Is Reflected in Hepatic Biochemical Indices

Author:

Keinänen MarjaORCID,Nikonen Soili,Käkelä Reijo,Ritvanen Tiina,Rokka Mervi,Myllylä Timo,Pönni Jukka,Vuorinen Pekka J.ORCID

Abstract

Signs of impaired thiamine (vitamin B1) status in feeding-migrating Atlantic salmon (Salmo salar) were studied in three Baltic Sea areas, which differ in the proportion and nutritional composition of prey fish sprat (Sprattus sprattus) and herring (Clupea harengus). The concentration of n−3 polyunsaturated fatty acids (n−3 PUFAs) increased in salmon with dietary lipids and n−3 PUFAs, and the hepatic peroxidation product malondialdehyde (MDA) concentration increased exponentially with increasing n−3 PUFA and docosahexaenoic acid (DHA, 22:6n−3) concentration, whereas hepatic total thiamine concentration, a sensitive indicator of thiamine status, decreased with the increase in both body lipid and n−3 PUFA or DHA concentration. The hepatic glucose 6-phosphate dehydrogenase activity was suppressed by high dietary lipids. In salmon muscle and in prey fish, the proportion of thiamine pyrophosphate increased, and that of free thiamine decreased, with increasing body lipid content or PUFAs, or merely DHA. The thiamine status of salmon was impaired mainly due to the peroxidation of n−3 PUFAs, whereas lipids as a source of metabolic energy had less effect. Organochlorines or general oxidative stress did not affect the thiamine status. The amount of lipids, and, specifically, their long-chain n−3 PUFAs, are thus responsible for generating thiamine deficiency, and not a prey fish species per se.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference95 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3