Abstract
In DNA computing, the implementation of complex and stable logic operations in a universal system is a critical challenge. It is necessary to develop a system with complex logic functions based on a simple mechanism. Here, the strategy to control the secondary structure of assembled DNAzymes’ conserved domain is adopted to regulate the activity of DNAzymes and avoid the generation of four-way junctions, and makes it possible to implement basic logic gates and their cascade circuits in the same system. In addition, the purpose of threshold control achieved by the allosteric secondary structure implements a three-input DNA voter with one-vote veto function. The scalability of the system can be remarkably improved by adjusting the threshold to implement a DNA voter with 2n + 1 inputs. The proposed strategy provides a feasible idea for constructing more complex DNA circuits and a highly integrated computing system.
Funder
National Key Technology R&D Program of China
National Natural Science Foundation of China
LiaoNing Revitalization Talents Program
Natural Science Foundation of Liaoning Province
Subject
Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献