Recent Progress in Silicon-Based Slow-Light Electro-Optic Modulators

Author:

Han Changhao,Jin MingORCID,Tao Yuansheng,Shen Bitao,Wang Xingjun

Abstract

As an important optoelectronic integration platform, silicon photonics has achieved significant progress in recent years, demonstrating the advantages on low power consumption, low cost, and complementary metal–oxide–semiconductor (CMOS) compatibility. Among the different silicon photonics devices, the silicon electro-optic modulator is a key active component to implement the conversion of electric signal to optical signal. However, conventional silicon Mach–Zehnder modulators and silicon micro-ring modulators both have their own limitations, which will limit their use in future systems. For example, the conventional silicon Mach–Zehnder modulators are hindered by large footprint, while the silicon micro-ring modulators have narrow optical bandwidth and high temperature sensitivity. Therefore, developing a new structure for silicon modulators to improve the performance is a crucial research direction in silicon photonics. Meanwhile, slow-light effect is an important physical phenomenon that can reduce the group velocity of light. Applying slow-light effect on silicon modulators through photonics crystal and waveguide grating structures is an attractive research point, especially in the aspect of reducing the device footprint. In this paper, we review the recent progress of silicon-based slow-light electro-optic modulators towards future communication requirements. Beginning from the principle of slow-light effect, we summarize the research of silicon photonic crystal modulators and silicon waveguide grating modulators in detail. Simultaneously, the experimental results of representative silicon slow-light modulators are compared and analyzed. Finally, we discuss the existing challenges and development directions of silicon-based slow-light electro-optic modulators for the practical applications.

Funder

National Key R&D Program of China

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3