Abstract
Flash flooding affects a growing number of people and causes billions of dollars in losses each year with the impact often falling disproportionally on underdeveloped regions. To inform post-flood mitigation efforts, it is crucial to determine flash flooding extents, especially for extreme events. Unfortunately, flood hazard mapping has often been limited by a lack of observations with both high spatial and temporal resolution. The CubeSat constellation operated by Planet Labs can fill this key gap in Earth observations by providing 3 m near-daily multispectral imagery at the global scale. In this study, we demonstrate the imaging capabilities of CubeSats for mapping flash flood hazards in arid regions. We selected a severe storm on 13–14 August 2021 that swept through the town of Gila Bend, Arizona, causing severe flood damages, two deaths, and the Declaration of a State of Emergency. We found the spatial extent of flooding can be mapped from CubeSat imagery through comparisons of the near-infrared surface reflectance prior to and after the flash flood event (ΔNIR). The unprecedented spatiotemporal resolution of CubeSat imagery allowed the detection of ponded (ΔNIR ≤ −0.05) and flood-affected (ΔNIR ≥ +0.02) areas that compared remarkably well with the 100-year flood event extent obtained by an independent hydraulic modeling study. Our findings demonstrate that CubeSat imagery provides valuable spatial details on flood hazards and can support post-flood activities such as damage assessments and emergency relief.
Funder
National Aeronautics and Space Administration
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献