Estimating LAI for Cotton Using Multisource UAV Data and a Modified Universal Model

Author:

Yan Puchen,Han QishengORCID,Feng Yangming,Kang Shaozhong

Abstract

Leaf area index(LAI) is an important indicator of crop growth and water status. With the continuous development of precision agriculture, estimating LAI using an unmanned aerial vehicle (UAV) remote sensing has received extensive attention due to its low cost, high throughput and accuracy. In this study, multispectral and light detection and ranging (LiDAR) sensors carried by a UAV were used to obtain multisource data of a cotton field. The method to accurately relate ground measured data with UAV data was built using empirical statistical regression models and machine learning algorithm models (RFR, SVR and ANN). In addition to the traditional spectral parameters, it is also feasible to estimate LAI using UAVs with LiDAR to obtain structural parameters. Machine learning models, especially the RFR model (R2 = 0.950, RMSE = 0.332), can estimate cotton LAI more accurately than empirical statistical regression models. Different plots and years of cotton datasets were used to test the model robustness and generality; although the accuracy of the machine learning model decreased overall, the estimation accuracy based on structural and multisources was still acceptable. However, selecting appropriate input parameters for different canopy opening and closing statuses can alleviate the degradation of accuracy, where input parameters select multisource parameters before canopy closure while structural parameters are selected after canopy closure. Finally, we propose a gap fraction model based on a LAImax threshold at various periods of cotton growth that can estimate cotton LAI with high accuracy, particularly when the calculation grid is 20 cm (R2 = 0.952, NRMSE = 12.6%). This method does not require much data modeling and has strong universality. It can be widely used in cotton LAI prediction in a variety of environments.

Funder

National Natural Science Fund of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3