Determination of Long-Term Soil Apparent Thermal Diffusivity Using Near-Surface Soil Temperature on the Tibetan Plateau

Author:

Tong Bing,Xu Hui,Horton Robert,Bian Lingen,Guo JianpingORCID

Abstract

The knowledge of soil apparent thermal diffusivity (k) is important for investigating soil surface heat transfer and temperature. Long-term k determined using the near-surface soil temperature is limited on the Tibetan Plateau (TP). The main objective of this study is to determine k with a conduction–convection method using the near-surface soil temperature measured at three sites during 2014–2016 on the TP. The hourly, daily, and monthly k values of the 0.0 m to 0.20 m layer were obtained. The hourly and daily k values ranged from 0.3 × 10−6 m2 s−1 to 1.9 × 10−6 m2 s−1 at the wet site, and from 1.0 × 10−7 m2 s−1 to 4.0 × 10−7 m2 s−1 at the two dry sites. For the monthly timescale, k ranged from 0.4 (±0.0) × 10−6 m2 s−1 to 1.1 (±0.2) × 10−6 m2 s−1 at the wet site, and varied between 1.7 (±0.0) × 10−7 m2 s−1 and 3.3 (±0.2) × 10−7 m2 s−1 at the two dry sites. The k was not constant over a day, and it varied seasonally to different degrees at different sites and years. The variation of k with soil moisture (θ) appeared to be roughly similar for unfrozen soil at these sites and years, namely, k increased sharply before reaching the peak as θ increased, and then it tended to be stable or varied slightly with further increases in θ. This variation trend was consistent with previous studies. However, the relationship between k and θ changed when soil temperature was below 0 °C, because ice had higher k than water. The correlation coefficients (r) between k and θ ranged from 0.37 to 0.80, and 0.80 to 0.92 on hourly and monthly timescales, respectively. The monthly and annual k values were significantly correlated (r: 0.73~0.93) to the Normalized Difference Vegetation Index (NDVI). The results broaden our understanding of the relationship between in situ k and θ. The presented values of k at various timescales can be used as soil parameters when modeling land–atmosphere interactions at these TP regions.

Funder

Second Tibetan Plateau Scientific Expedition and Research pro-gram

Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3