Three-Dimensional Gridded Radar Echo Extrapolation for Convective Storm Nowcasting Based on 3D-ConvLSTM Model

Author:

Sun Nengli,Zhou Zeming,Li Qian,Jing JinruiORCID

Abstract

Radar echo extrapolation has been widely developed in previous studies for precipitation and storm nowcasting. However, most studies have focused on two-dimensional radar images, and extrapolation of multi-altitude radar images, which can provide more informative and visual forecasts about weather systems in realistic space, has been less explored. Thus, this paper proposes a 3D-convolutional long short-term memory (ConvLSTM)-based model to perform three-dimensional gridded radar echo extrapolation for severe storm nowcasting. First, a 3D-convolutional neural network (CNN) is used to extract the 3D spatial features of each input grid radar volume. Then, 3D-ConvLSTM layers are leveraged to model the spatial–temporal relationship between the extracted 3D features and recursively generate the 3D hidden states correlated to the future. Nowcasting results are obtained after applying another 3D-CNN to up-sample the generated 3D hidden states. Comparative experiments were conducted on a public National Center for Atmospheric Research Data Archive dataset with a 3D optical flow method and other deep-learning-based models. Quantitative evaluations demonstrate that the proposed 3D-ConvLSTM-based model achieves better overall and longer-term performance for storms with reflectivity values above 35 and 45 dBZ. In addition, case studies qualitatively demonstrate that the proposed model predicts more realistic storm evolution and can facilitate early warning regarding impending severe storms.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Hunan Province Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3